普林斯顿微积分读本 X

Jun 27, 2021    旋转体   微分方程  

§体积、弧长和表面积

For volumes and surface areas, we’ll pay special attention to solids which are formed by revolving a region in the plane about some axis which lies in the plane; such solids are called solids of revolution.

29.1 旋转体的体积

定积分的回顾(见第16章

So here’s the pattern: we make a little strip of width $\mathrm{d}x$ units and height $y$ units at position $x$ on the $x$-axis, work out its area, then put a definite integral sign in front to get the total area we’re looking for.

定积分(黎曼和) $$ \int_2^4\sqrt{1-(x-3)^2}\mathrm{d}x $$ 计算圆 $(x-3)^2+y^2=1$ 在 $x$ 轴上($y$ 轴的正半轴)的面积

每个 strips 的面积为 $y\mathrm{d}x$ 平方单位

29.1.1 圆盘法

半圆 $(x-3)^2+y^2=1$ ($y>0$)绕 $x$ 轴旋转得到,球(sphere)

strips 绕 $x$ 轴旋转得到圆盘(disc),体积为 $\pi y^2\mathrm{d}x$ 立方单位

球的体积为 $$ \int_2^4\pi y^2\mathrm{d}x=\pi\int_2^4(1-(x-3)^2)\mathrm{d}x $$

The method we just used is called the disc method; it is also known as the method of slicing.

29.1.2 壳法

半圆 $(x-3)^2+y^2=1$ ($y>0$)绕 $y$ 轴旋转得到,the top half of a bagel

strips 绕 $y$ 轴旋转得到圆盘的外壳(shell),体积 $2\pi xy\mathrm{d}x$ 立方单位 $$ \int_2^4{2\pi}xy\mathrm{d}x=2\pi\int_2^4x\sqrt{1-(x-3)^2}\mathrm{d}x $$ 令 $t=x-3$,所以 $\mathrm{d}t=\mathrm{d}x$

$$ 2\pi\int_{-1}^{1}(t+3)\sqrt{1-t^2}\mathrm{d}t=2\pi(\int_{-1}^{1}t\sqrt{1-t^2}\mathrm{d}t+\int_{-1}^{1}3\sqrt{1-t^2}\mathrm{d}t) $$

The first integral could be done by substituting $u = 1 - t^2$, and the second could be done by a trig substitution.

29.1.3 小结

If you revolve the area under the curve $y = f(x)$ between $x = a$ and $x = b$ (as shown above) about the $x$-axis, then the disc method applies and the volume is equal to $$ \int_a^b \pi y^2\mathrm{d}x $$ If you revolve the area under the curve $y = f(x)$ between $x = a$ and $x = b$ (as shown above) about the $y$-axis, then the shell method applies and the volume is equal to $$ \int_a^b 2\pi xy\mathrm{d}x $$

注意:根据实际情况考虑两种方法的使用(考虑以下三种变形)

…the following variations:

  1. The region to be revolved might lie between a curve and the $y$-axis (instead of the $x$-axis).
  2. The region to be revolved might lie between two curves, instead of just being a region under a curve down to an axis.
  3. The axis of revolution may be parallel to the $x$-axis or $y$-axis, not the axis itself.

…after you carve up the region into little strips, then:

29.1.4 变形 1:曲线和 $y$ 轴之间的区域

If the region lies between a curve and the $y$-axis, switch $x$ and $y$.

绕 $y$ 轴旋转时,使用圆盘法 $$ V=\int_A^B\pi{x^2}\mathrm{d}y $$ 绕 $x$ 轴旋转时,使用壳法 $$ V=\int^B_A{2\pi}yx\mathrm{d}y $$

29.1.5 变形 2:两曲线间的区域

If the region lies between two curves, find the difference between the two corresponding volumes of revolution.

例如,$y=1+\sqrt{25-x^2}$ 和 $y=1$ 之间的区域绕 $x$ 轴旋转形成的体积

29.1.6 变形 3:绕与坐标轴平行的直线旋转

If the axis of revolution is $x = h$, replace $x$ by $(x-h)$ (or $(h-x)$ if $x < h$). If the axis of revolution is $y = h$, replace $y$ by $(y-h)$ (or $(h-y)$ if $y < h$).

29.2 一般物体的体积

  1. Choose an axis.
  2. Find a typical cross-sectional area at a point $x$ on the axis; call this area $A(x)$ square units.
  3. Then if $V$ is the volume of the solid (in cubic units), we have $$ V=\int_a^b{A(x)}\mathrm{d}x $$ where $[a, b]$ is the range of $x$ which completely covers the solid.

锥体的体积 —— the volume of a “generalized” cone

the ratio of the areas is the square of the ratio of the corresponding lengths, which are $L$ and $l$ units in our case: $$ \frac{A}{A(x)}=(\frac{L}{l})^2 $$

$$ A(x)=\frac{Al^2}{L^2}=\frac{A}{L^2}\cdot(\frac{xL}{h})^2=\frac{Ax^2}{h^2} $$

当 $x=0$,$A(x)=A\times0^2/h^2=0$

当 $x=h$,$A(x)=A\times h^2/h^2=A$

$$ \begin{aligned} V=\int_0^h{A(X)}\mathrm{d}x&=\int_0^h\frac{Ax^2}{h^2}\mathrm{d}x\ \implies V&=\frac{A}{h^2}\int_0^h{x^2}\mathrm{d}x\&=\frac{A}{h^2}\cdot{h^3\over3}\&={1\over3}Ah \end{aligned} $$

29.3 弧长

  1. 如果 $y=f(x)$ 的 $x$ 介于 $a$ 和 $b$ 之间,那么 $$ \begin{aligned} arcL&=\int_?^?\sqrt{(\mathrm{d}x)^2+{(\mathrm{d}y)^2}}\\implies arcL&=\int_a^b\sqrt{1+(\frac{\mathrm{d}y}{\mathrm{d}x})^2}\mathrm{d}x=\int_a^b\sqrt{1+(f’(x))^2}\mathrm{d}x \end{aligned} $$

  2. 如果 $x=g(y)$,其中 $y$ 介于 $A$ 和 $B$ 之间,那么 $$ arcL=\int_A^B\sqrt{1+(\frac{\mathrm{d}x}{\mathrm{d}y})^2}\mathrm{d}y=\int_A^B\sqrt{1+(g’(y))^2}\mathrm{d}y $$

  3. 对于参数化形式,有 $$ arcL=\int_{t_0}^{t_1}\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2+(\frac{\mathrm{d}y}{\mathrm{d}t})^2}\mathrm{d}t $$

  4. 在极坐标中,$r=f(\theta)$,根据乘法法则有 ${\mathrm{d}x\over\mathrm{d}\theta}=f’(\theta)\cos(\theta)-f(\theta)\sin(\theta)$ 和 ${\mathrm{d}y\over\mathrm{d}\theta}=f’(\theta)\sin(\theta)+f(\theta)\cos(\theta)$ $$ arcL=\int_{\theta_0}^{\theta_1}\sqrt{(f(\theta))^2+(f’(\theta))^2}\mathrm{d}\theta $$

29.3.1 参数化的速率

${\mathrm{d}x\over\mathrm{d}t}$ 表示在 $x$ 方向上的速度(velocity)

${\mathrm{d}y\over\mathrm{d}t}$ 表示在 $y$ 方向上的速度,

Its real speed has to involve both of these velocities.

速率(speed)由毕达哥拉斯定理得 $$ speed=\sqrt{({\mathrm{d}x\over\mathrm{d}t})^2+({\mathrm{d}y\over\mathrm{d}t})^2} $$ 类似于参数化形式的弧长公式的被积函数

29.4 旋转体的表面积

  1. 如果 $y=f(x)$ 关于 $x$ 轴旋转,其中 $x$ 介于 $a$ 和 $b$ 之间,那么 $$ S=\int_a^b{2\pi}y\sqrt{1+({\mathrm{d}y\over\mathrm{d}x})^2}\mathrm{d}x=\int_a^b{2\pi}f(x)\sqrt{1+(f’(x))^2}\mathrm{d}x $$

  2. 如果曲线关于 $y$ 轴旋转,那么 $$ S=\int_a^b{2\pi}x\sqrt{1+({\mathrm{d}y\over\mathrm{d}x})^2}\mathrm{d}x=\int_a^b{2\pi}x\sqrt{1+(f’(x))^2}\mathrm{d}x $$

  3. 对于参数化形式,有 $$ \begin{aligned} S&=\int_{t_0}^{t_1}{2\pi}y\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2+(\frac{\mathrm{d}y}{\mathrm{d}t})^2}\mathrm{d}t\ S&=\int_{t_0}^{t_1}{2\pi}x\sqrt{(\frac{\mathrm{d}x}{\mathrm{d}t})^2+(\frac{\mathrm{d}y}{\mathrm{d}t})^2}\mathrm{d}t \end{aligned} $$

§微分方程

30.1 微分方程

一阶微分方程(first-order differential equation) $$ {\mathrm{d}y\over\mathrm{d}x}=ky $$ 当 $k$ 为一固定常数时,方程的解为 $y=Ae^{kx}$

初值问题(Initial Value Problem, IVP)

例如,${\mathrm{d}y\over\mathrm{d}x}=-2y$,$y(0)=5$,解得 $y=5e^{-2x}$

30.2 可分离变量的一阶微分方程

可分离变量(separable) $$ \frac{1}{ky}\mathrm{d}y=\mathrm{d}x $$ $\int\frac{1}{ky}\mathrm{d}y=\int\mathrm{d}x\implies\frac{1}{k}\ln|y|=x+C$ $$ |y|=e^{kx+kC}=e^{kC}e^{kx} $$ 所以 $y=\pm{e^{kC}e^{kx}}$,令 $\pm{e^{kC}}=A$

例如,${\mathrm{d}y\over\mathrm{d}x}-\cos^2(y)\cos(x)=0$

$\tan(y)=\sin(x)+C \implies y=\tan^{-1}(\sin(x)+C)+n\pi$

考虑 IVP,$y(0)={\pi\over4}$ 和 $y(0)={5\pi\over4}$

由 $\tan(y)=\sin(x)+C$ 可得 $C=1$

由 $y=\tan^{-1}(\sin(x)+C)+n\pi$ 解得 $n=0$ 和 $n=1$ ($y(0)={5\pi\over4}$)

30.3 一阶线性方程

一阶线性方程(first-order linear equation) $$ {\mathrm{d}y\over\mathrm{d}x}+p(x)y=q(x) $$ 其中 $p$ 和 $q$ 是关于 $x$ 的函数

注意:一阶线性方程的 $y$ 和 ${\mathrm{d}y/\mathrm{d}x}$ 的幂都为 $1$

积分因子(integrating factor):$e^{\int{p(x)}\mathrm{d}x}$

After you multiply the original differential equation by this integrating factor, the left-hand side can be “factored” as ${\mathrm{d}\over\mathrm{d}x}(integrating\ factor\times{y})$

  1. 一阶线性方程写成标准形式(standard form)
  2. 找出合适的积分因子
  3. 等式两边同时乘上积分因子
  4. 对等式两边求不定积分
  5. 等式两边同时除以积分因子

30.3.1 积分因子

${\mathrm{d}y\over\mathrm{d}x}+p(x)y=q(x)$ 乘上积分因子 $e^{\int{p(x)}\mathrm{d}x}{\mathrm{d}y\over\mathrm{d}x}+e^{\int{p(x)}\mathrm{d}x}p(x)y=stuff\ in\ x$

由链式法则(chain rule)得 $$ {\mathrm{d}\over\mathrm{d}x}(e^{\int{p(x)}\mathrm{d}x})={\mathrm{d}\over\mathrm{d}x}(\int{p(x)}\mathrm{d}x)\times{e^{\int{p(x)}\mathrm{d}x}}=p(x)e^{\int{p(x)}\mathrm{d}x} $$

(注意:$p(x)$ 为不定积分 $\int{p(x)}\mathrm{d}x$ 的解,$C=0$)

由乘法法则(product rule)得 $$ {\mathrm{d}\over\mathrm{d}x}(e^{\int{p(x)}\mathrm{d}x}y)=e^{\int{p(x)}\mathrm{d}x}{\mathrm{d}y\over\mathrm{d}x}+e^{\int{p(x)}\mathrm{d}x}p(x)y=stuff\ in\ x $$

30.4 常系数微分方程

常系数微分方程(constant-coefficient D.E, linear differential equations with constant coefficients) $$ a_n{\mathrm{d}^ny\over\mathrm{d}x^n}+\dots+a_2{\mathrm{d}^2y\over\mathrm{d}x^2}+a_1{\mathrm{d}y\over\mathrm{d}x}+a_0y=f(x) $$ 例如二阶线性微分方程则为 $a{\mathrm{d}^2y\over\mathrm{d}x^2}+b{\mathrm{d}y\over\mathrm{d}x}+cy=f(x)$

齐次(homogeneous):假设方程右边没有关于 $x$ 的部分,例如 $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}-\frac{\mathrm{d}y}{\mathrm{d}x}+20y=0$ 和 $\frac{\mathrm{d}y}{\mathrm{d}x}-3y=0$

30.4.1 解一阶齐次方程

${\mathrm{d}y\over\mathrm{d}x}+ay=0$ 的解为 $y=Ae^{-ax}$

30.4.2 解二阶齐次方程

对 $ay’’+by’+cy=0$,求解特征二次方程(characteristic quadratic equation) $at^2+bt+c=0$ 的根

How to solve the homogeneous equation $ay’’ + by’ + cy = 0$:

  1. Write down the characteristic quadratic equation $at^2 + b^t + c = 0$ and solve it for $t$.
  2. If there are two different real roots $\alpha$ and $\beta$, the solution is $y = Ae^{\alpha x} + Be^{\beta x}$.
  3. If there is only one (double) real root $\alpha$, the solution is $y = Ae^{\alpha x} + Bxe^{\alpha x}$.
  4. If there are two complex roots, they will be conjugate to each other. That is, they must be of the form $\alpha\pm{i}\beta$. The solution is $y = e^{\alpha x}(A\cos({\beta}x) + B\sin({\beta}x))$. In all three cases (2, 3 and 4), $A$ and $B$ are undetermined constants.

30.4.3 特征二次方程

以 $ay’’+by’+cy$ 有两个相同的实数根为例:

在二阶齐次方程中 $y=e^{\alpha x}$,那么 $y’=\alpha{e^{\alpha x}},y’’=\alpha^2e^{\alpha x}$

所以 $ay’’+by’+cy=a{\alpha^2}e^{\alpha x}+b{\alpha}e^{\alpha x}+ce^{\alpha x}=(a\alpha^2+b\alpha+c)e^{\alpha x}$

如果 $\alpha$ 是特征二次方程的根时,即 $a\alpha^2+b\alpha+c$,那么 $ay’’+by’+cy=0$

30.4.4 非齐次方程和特解

例 $$ y’’-y’-20y=e^x $$ 对于二阶齐次方程 $y’’-y’-20y=0$,其解(complete solution)为 $y=Ae^{-4x}+Be^{5x}$

$y_H$ 表示齐次方程,$y_P$ 表示非齐次方程,有

如果 $y_H=Ae^{-4x}+Be^{5x}$,那么 $$y_H’’-y_H’-20y_H=0\tag{1}$$

如果 $y_P=-{1\over20}e^x$,那么 $$y_P’’-y_P’-20y_P=e^x\tag{2}$$

$-{1\over20}e^x$ 称为 $y_P$ 的一个特解(particular solution)

$(1)+(2)\implies(y_H+y_P)’’-(y_H+y_P)’-20(y_H+y_P)=e^x$

如果 $y=y_H+y_P$,则 $y$ 也是原微分方程的一个解

特解加上其齐次微分方程的解,为原微分方程的全解(full solution)

Here’s a summary of our methods so far:

  1. Rearrange the equation into the correct form. That is, put all the $x$-junk on the right-hand side.
  2. Using the techniques from Sections 30.4.1 and 30.4.2 above, solve the associated homogeneous equation. The solution, which we’ll write as $y_H$, will have one or two undetermined constants in it (depending on whether the equation is first- or second-order). We call $y_H$ the homogeneous solution of the equation.
  3. If the original function $f$ is actually $0$, then we’re already done; the complete solution is $y = y_H$.
  4. On the other hand, if the function $f$ is anything other than $0$, then write down the form for the particular solution $y_P$ (see Section 30.4.5 below). The form will have some constants which must be determined. Substitute $y_P$ into the original equation and equate coefficients to find the constants.
  5. Finally, the solution is $y = y_H + y_P$ .

30.4.5 求特解

例如 $y’-3y=5e^{2x}$ 的右边是 $e^{2x}$ 的倍数,

其特解的形式应为 $y_P=Ce^{2x}$,求得 $C=-5$

其齐次微分方程的齐次解为 $y_H=Ae^{3x}$,

故该微分方程的全解为 $y=y_H+y_P=Ae^{3x}-5e^{2x}$

…the table only shows you what to do if $f$ happens to be a polynomial, an exponential, a sine, a cosine, or some product or sum of one or more of these types of function. Otherwise the method just doesn’t work. There is a fancier method called “variation of parameters” which is much more general, but it’s outside the scope of this book.

$f(x)$ the form of $y_P$
多项式(polynomial of degree $n$),如 $f(x)=-x^3-x^2+2+22$ 次数相同的一般多项式,$y_P=ax^3+bx^2+cx+d$
指数 $e^{kx}$ 的倍数,如 $f(x)=10e^{-4x}$ 指数 $e^{kx}$ 的常数($C$)倍,$y_P=Ce^{-4x}$
$\cos(kx)$ 的倍数 + $\sin(kx)$ 的倍数,如 $f(x)=\cos(x)$ 和 $f(x)=\sin(x)$ $y_P=C\cos(kx)+D\sin(kx)$,如 $y_P=C\cos(x)+D\sin(x)$,即 $k=1$
函数的和(sum)或积(product) 若为积,则删除(omit)一个常数。如 $2x^2e^{-6x}$ 的特解形式 $(ax^2+bx+c)Ce^{-6x}$ 中的 $C$ 没有必要

注意:若 $y_P$ 和 $y_H$ 冲突(见30.4.7),令特解的形式乘以 $x$ 或 $x^2$

30.4.6 求特解的例子

化简时始终注意以 $x$ 相关的部分为“变量”

30.4.7 解决 $y_P$ 和 $y_H$ 的冲突

$y_P$ 包含在 $y_H$ 的情况,代入微分方程时,等式左边为 $0$,该解无效

例如 $y’’-3y’+2y=7e^{2x}$

齐次解:$y_H=Ae^x+Be^{2x}$

特解的形式为:$y_P=Ce^{2x}$

当 $A=0$ 且 $B=C$ 时,特解无效

令 $y_P=Cxe^{2x}$,那么 $y_P’=2Cxe^{2x}+Ce^{2x}$,$y’’=4Cxe^{2x}+4Ce^{2x}$

代入微分方程,等式成立

30.4.8 IVP

As usual, to solve an IVP, first solve the differential equation, then use the initial conditions to find the remaining unknown constants.

30.5 微分方程建模

细菌培养的种群增长微分方程

假设一

细菌培养呈指数增长,每小时的瞬时增长率为培养皿中细菌数量的 $2$ 倍

A certain culture of bacteria grows exponentially in such a way that its instantaneous hourly rate of increase is equal to twice the number of bacteria in the culture.

标准种群增长微分方程($k=2$) $$ {\mathrm{d}P\over\mathrm{d}t}=2P $$ $P$ 为时间 $t$ 小时的种群数量(类似于9.6.1中讨论的问题)

假设二

以每小时 $8$ 盎司的速率注入抗生素,每盎司每小时可杀死 $25000$ 细菌

在 $t$ 小时时,注入抗生素的剂量 $8t$ 盎司,死亡率为 $8t\times25000=200000t$

微分方程修正为 $$ {\mathrm{d}P\over\mathrm{d}t}=2P-200000t $$ 可整理为标准形式 $$ {\mathrm{d}P\over\mathrm{d}t}-2P=-200000t $$ 乘上积分因子 $e^{\int-2\mathrm{d}t}=e^{-2t}$ ,两边同时求不定积分 $$ e^{-2t}P=-200000\int{e^{-2t}}t\mathrm{d}t $$ ($\int{e^{-2t}}t\mathrm{d}t$ 使用分部积分求解,见18.2) $$ e^{-2t}P=100000te^{-2t}+50000e^{-2t}+200000C $$ 两边同时乘上 $e^{2t}$,令方程左边为 $P$(relabel $C=200000C$) $$ P=100000t+50000+Ce^{2t} $$ 令 $t=0$,可以得到初始数量 $P_0$ 的方程 $P_0=50000+C$

代入方程为 $$ P=100000t+50000+(P_0-50000)e^{2t} $$

结论

If $P_0 > 50000$, then you add a positive multiple of $e^{2t}$ to this and so the population grows even faster.

相反,如果 $P_0<50000$,那么 $$ P=100000t+50000+(negative\ constant)e^{2t} $$

因为随着 $t$ 增大, $P$ 的大小最终由因子 $e^{2t}$ 决定,$P$ 最终降为 $0$ (例如 $P_0=49999$)